§ CS61C: Exam1 Review

CS61C Fall2007 — Exam #1 Review
Greg Gibeling
Select Slides from Prof. Wawrzynek

10/12/2007 CS61C Exam #1 Review

Rules

= Participate or Leave
= Shut up. Dead serious. You talk, we all stop until you're done or you leave.
= It's not or job to force understanding upon you
= This is college, not gradeschool
= If you have a question, ask it NOW
= You aren't the only one with that question

. %ven when you're wrong about something works its always an interesting
idea

= We cannot stress this enough
= Have a question to ask when I call on you
= ... or you have to answer all subsequent questions

= What are you more afraid of? Appearing not to know everything, or having
that proved?

= Speak up, interrupt, don't raise your hand
= I'm often wrong, I'm not being tested, you are, you have to be right

10/12/2007 CS61C Exam #1 Review 2

Format

= 4:15-6:00 Lecture-ish
Highlight lecture slides from Prof. Wawrzynek
Discussion slides
If you want us to review a particular quiz/homework/proj you lost points on now is the time!
Before presenting an assignment
What's your firt quess as to the most common problem with this assignment?
~ Who says this was an easy assignment?
What to discuss
+ What was the problem, from a detailed technical standpoint?
Why did the student make this mistake?
Qur solution
+ Some wrong student solutions
= Quizzes, Homeworks, Projects & Labs
= 6:15-7:15 Dinner+
= Random questions
= Started old midterm questions
= 7:15-8:00 Wrapup, Questions & Examples
Old midterm questions
General problem solving, we'll roam and provide help
What’s still not clear?
Revisit any problem you like

10/12/2007 €S61C Exam #1 Review

§ Course Overview
=

10/12/2007 CS61C Exam #1 Review 4

What are “Machine Structures”?

Application (ex: browser)

61C

nstruction Set ™.
.Architecture ... °

10/12/2007 CS61C Exam #1 Review

Levels of Abstraction

High Level Language temp = v[k];
Program (e.g., C)

v[k] = v[k+1];
Compiler

v[k+1] = temp;

Assembler

Machine Language
Program (MIPS)

Machine
Interpretation
Hardware Architecture Description
(e.g., block diagrams)
o I - e
Arciectre] . T
Logic Circuit Description
(Circuit Schematic Diagrams)
10/12/2007 CS61C Exam #1 Review 6

ano.

5 Main Components

Personal Computer

Computer Keyboard,
Processor Devices Mouse
Disk
(where (where
programs, :g;x:grams,
ﬁs;aWhen live when
running) not running)
\Display,
Printer

10/12/2007 CS61C Exam #1 Review

Technology Trends

= Processor
= 2X in speed every 1.5 years (since ‘85);

= Memory
= DRAM capacity: 2x / 2 years (since ‘96);

= Disk
= Capacity: 2X / 1 year (since ‘97)

10/12/%067 CS61C Exani #1 Review

Stored Program Computer

= Binary Data
= Numbers: integer & floating point
= +2Gi for integers, 2*10+38 for float (single precision)
= 4Gi values either way in 32b
= Characters: ASCII & Unicode
= An assignment from numbers to symbols
= Pointers: an integer with meaning
= Instructions: MIPS, IA32, SBN
= Perform operations on data
= The meaning of data depends on it’s interpretation
= In C we specify a type for all data
= In MIPS we don't know the type apriori
= For example the format specifier tells us the type

10/12/2007 CS61C Exam #1 Review

Course/Review Outline

. = Memory Organization
. = Caches
. = Virtual Memory
. = I/0
" = Interrupts
. = Disks, Networks
. = Advanced Topics
= = Performance
. = Virtualization & Simulation

= Processors & Hardware
= Logic Circuit Design
= CPU organization
= Pipelining

= Parallel Programming
= Parallel Architectures

10/12/2007 €S61C Exam #1 Review

§ C Overview

10/12/2007 €S61C Exam #1 Review

Compilation: Overview

= Java compiled to
“bytecode”
= Java compiler is written in java/C

= C compiled to machine code

= Partl: .cfiles to .o files
= Part2: the .o files into executables
= Scheme is

= Interpreter is written in C

= Machine Code is interpreted
= Interpreter is in hardware!

10/12/2007 CS61C Exam #1 Review

Translation & Interpretation

= Examples
= Compiler: Translates an HLL into an LLL
= Assembler: Mechanical translation from assembly to machine code
= Linker
« A“translator”
= Truthfully it doesn't translate anything
= BASH/TCSH/CMD: Shell interpreters
= CPU: A machine for interpreter implemented in hardware
= Translation
= Turn code into a different kind of code
= Interpretation
= Imperative languages: do what the commands say
» All languages we've see to date are imperative
= Programs are a list of commands
= Declarative languages: ?
. Verilog, the next language we'll learn is declarative
« “Programs” are statements of existence, not commands

10/12/2007 €S61C Exam #1 Review 13

C vs. Java™ Overview

Java C

= Object-oriented = No objects

(OOP) = “Functions”
= “Methods” = Clibraries are lower-level
= Class libraries of data -

structures memory management
. memory N

management

= No overhead

High memory overhead = No variables initialized

All variables initialized

10/12/2007 €S61C Exam #1 Review 14

C vs. Java™ Syntax

= C to Java: A rough transition
= “.”in Java becomes “->"in C
= Both turn into 1w/sw in MIPS

= Pointer vs Memory
= A pointer is different than the memory it points to
= E.g. strings are all in your imagination in C
= Can someone tell me how to free a string?
= You can store pointers in memory
= Leads to complex 1w/sw sequences, lab5ex1

10/12/2007 CS61C Exam #1 Review 15

All Kinds of Zeros

= Not my IQ
= Kinds of Zeros
NULL — for pointers
0 — for integers
0.0 — for floating point
"\0’ - for characters
#define FALSE 0
= Remember everything except 0 is TRUE
= No boolean types
= Why
= So that your code is readable
= NULL might not always be zero!
= These constants specify value & type

10/12/2007 CS61C Exam #1 Review 16

Common C Error

= There is a difference between
assignment and equality
" is assignment
M is an equality test

= This is one of the most common errors
for beginning C programmers!

10/12/2007 CS61C Exam #1 Review 17

C Syntax : flow control

= Conditionals
= if-else
= switch
= Loops
= while and for

= do-while

= All of these are branches in assembly

10/12/2007 CS61C Exam #1 Review 18

E C Syntax: main

m int main (int argc, char *argv([])
= What does this mean?
= argc: number of strings on command line
« the executable counts as one

=« plus one for each argument
« Example:

= argv is an array of pointers to strings
= Can also be written as a char ** argv

10/12/2007 €S61C Exam #1 Review 19

% Assembly

10/12/2007 CS61C Exam #1 Review 20

e Assembly Language

= Assembly is nearly what a CPU interprets

= “Instructions” are the primitive operations
= The set of instructions a particular CPU implements is
part of the Instruction Set Architecture
(IsA)
= Intel 80x86 (Pentium 4? 1BM/Motorola PowerPC (Old
Macintosh), MIPS, Intel 1A64, ARM, ...
= Assembly language is a textual representation
= Intermediate form in a C compiler

= As a means to directly program the CPU
= Why would anyone want to do this?

10/12/2007 €S61C Exam #1 Review 21

%‘ ISAs (1)

= CISC
= Complex Instruction Set Computing
= Useful for human assembly programmers
= Lots of complex instructions
= Ex: [EC VAX architecture had an instruction to evaluate polynomials!
= RISC (Cocke IBM, Patterson, 1980s)
= Reduced Instruction Set Computing
= Keep the instruction set small and simple
= Makes it easier to build fast hardware.
= Composing simpler instructions into more complex ones
= Useful for compilers

10/12/2007 CS61C Exam #1 Review 22

&l 1SAs (2)

= Problem: Design A Processor

= How many and what kind of registers?
= Native data width? MIPS is 32...

= How many and what kind of instructions?
= Will you have branches?
= Encoding?

= RISC or CISC?

= Superscalar? Vector? Dataflow? 00Q0?
« Take CS152!

= What's the minimum ISA?
- SBN!

10/12/2007 CS61C Exam #1 Review 23

J | ISAs (3)

= Single Instruction
= sbn: subtract branch if negative
= Build all operations up from this instruction
= No need for registers, just use memory
= “Universal Operator”
= NAND, Mux, etc...
= Performance
= CISC: Bad, RISC: Good, SBN: Very Bad
= Why is the sweet spot in the middle at RISC?
= S0 what?

10/12/2007 CS61C Exam #1 Review 24

MIPS Architecture

= MIPS
= An ISA
= Not a CPU!
= Semiconductor company
= Built one of the 1st commercial RISC CPUs
= Why MIPS instead of Intel 80x867?
= MIPS is simple, elegant
= CS152, CS162, CS164, Research!
= MIPS still widely used in embedded app!

10/12/2007 CS61C Exam #1 Review

~a

Most HP Lase et
workgraup printers are
ased™

driven by MIPS-based
é-bit processars.

Storage in Assembly (1)

= C & Java: Variables
= Stored where? Memory?
= How big are they?
= Assembly: Registers
= Special storage locations built directly into the CPU
= Must be fast & cheap to build
= Limited in number (32 for MIPS)
= Must be used efficiently
= Keeps machine code small
= Small, fast & simple
= All the same size (32bits for MIPS)
Width of registers generally the same as ISA word size
= Thousands of times faster than main memory (< 1ns)

10/12/2007

CS61C Exam #1 Review 26

Storage in Assembly (2)

= C&Java have variables
= Logical or virtual storage
= Can be stored in memory or a register
= Variable is just a name for a value
= Assembly has locations
= Physical storage
« Locations can be named (registers & labels)
= The value in a location can change, the location cannot
= Register Coloring
= Deciding which variables go in which locations
= Similar to 4-color theorem. See CS164

Meaning
Known
Known | Java

Unknown
Assembly

Width

Unknown | C

10/12/2007 CS61C Exam #1 Review

27

Register File

Storage in Assembly (2)-

= MIPS
= Registers are numbered from $0 to
$31

= Also named: $zero, $at ...
$16 - $23 9 $s0 - $s7 (CVariables)
$8 - $15 > $t0 - $t7 (Temporaries)

= 0 is a common constant
= Register zero ($0 or $zero) =0
= $0 is immutable

10/12/2007 €S61C Exam #1 Review

Assembly Instructions (1)

= Instructions
= An imperative (command) statement
= executes exactly one of a short list of simple commands
« Oneof (= +-%/)
= One per line (no need for ;)
= Syntax of General Instructions:
1234
1) name of operation
2) operand getting result (“destination”)
3) First operand for operation (“sourcel”)

4) Second operand for operation (“source2”), register or immediate

= Syntax is rigid
. 1 operator, 3 operands (for MIPS)
. Why?

10/12/2007 CS61C Exam #1 Review

29

Assembly Instructions (2)

= Simple Examples
add $s0,$s1,$s2 # a = b + ¢
= astoredin $s0, bin sl, cins2
sub $s3,$s4,3s5 # d =e - £
= dstoredin $s3, ein $s4, fin $s5
= Composition (Compilation)
#a=b+c+d-e;
add $t0, $sl, $s2 # temp = b + C
add $t0, $t0, $s3 # temp = temp + d
sub $s0, $t0, $s4 # a = temp - e

10/12/2007 CS61C Exam #1 Review

e Assembly Instructions (3)

= Immediates are nhumerical constants
= Very common
= How else do we get meaningful values?

= Add Immediate:
. f =g+ 10
£ stored in $s0, gin $sl
» Similar to add instruction
» No subi in MIPS. Why? RISC!

10/12/2007 CS61C Exam #1 Review

31

% Memory Exposed

10/12/2007 CS61C Exam #1 Review 32

e Address vs. Value

= Consider memory to be a single huge array:
= Each cell of the array has an address associated with it.
= Each cell also stores some value
= Do you think they use signed or unsigned numbers?
Negative address?!
= Don't confuse the
location with the

referring to a memory
stored in that location.

10/12/2007 CS61C Exam #1 Review

33

%ﬁ‘ Pointers (1)

= An address refers to a particular memory
location. In other words, it points to a
memory location.

" : A variable that contains an address

Location (address)

\‘ 101 102 103 104 105 ...

[T Tzl [T T [Tao[T T hog -
X y

name f

10/12/2007 CS61C Exam #1 Review 34

E Pointers (2)

= How to create a pointer:
& operator: get address of a variable

<[]
o[=] x[5]
o[71:[5]

= How get a value pointed to?
* “dereference operator”: get value pointed to
printf (“p points to %d\n”,*p);

P =&x;

10/12/2007 CS61C Exam #1 Review

35

. | Pointers (3)
o[1.5

=How to change a variable pointed to?
= Use dereference * operator on left of =

10/12/2007 CS61C Exam #1 Review 36

Pointers (4)

= Pointer Types
=« Normally a pointer can only point to one type
= Can point to different instances of that type!
- void *is atype that can point to anything
= Function Pointers: Remember JALR?
= Advantages
= Cheaper than passing a big array or struct
= What if your struct is >2GB on a 32bit machine?
= Cleaner, more compact code (K&R allocator)
= Disadvantes
= Single largest source of bugs in software
« Segfault & bus errors
- Security holes
= Declaring a pointer just allocates space to hold the pointer — it does not allocate
something to be pointed to!
= Local variables in C are not initialized, they may contain anything.

10/12/2007 €S61C Exam #1 Review 37

Assembly Labels

= Example:
N: .word 0
= N: A constant number, the address of the word
= .word: Allocate a word’s worth of storage
= 0: fill the allocated storage with 0

= Basic Use
1w $t0, 25(Stl) # StO = *(S$tl + 25)
sw $t0, 25(5tl) # *(5tl + 25) = $t0

= Advanced Uses
sw $s0, 10+N($al)
« 10+N is a constant computed by the assembler
sw $s0, N # sw $s0, N($0)
« Simple shorthand (useable only because of $01)
= Psuedolnstructions
la $t0, N # lui + ori as needed
1i $t0, N # should be the same as la..

10/12/2007 CS61C Exam #1 Review 38

Pointers and Parameters (1)

= Java and C pass primitives “by value”
= Procedure/function gets a copy of the parameter
= Changing the copy cannot change the original
void addOne (int x) {
x = x + 1;
}
int y = 3;
addOne (y); // vy isstill==
= How would we “fix” this?
= Java passes objects “by reference”
= Autoboxing/Unboxing in Java 1.5 complicates this
= C++, VB, etc... can pass arguments byref or byval

10/12/2007 CS61C Exam #1 Review 39

Arrays (1)

= Declaration
= int ar[2];
= declares a 2-element integer array
= An array is just a block of memory.
= int ar([] = {795, 635};
= Declares & initializes a 2-element integer array
= Where do the initial values come from?
= Declared arrays are only allocated while the scope is valid
= Lexical scoping (remember CS61A?)

= Accessing elements char *foo() {
= ar[num]; char string[32]; ...;
= returns the nunth element. return string;

} // hopefully segfault

10/12/2007 CS61C Exam #1 Review 40

Arrays (2)

= Arrays are (almost) identical to pointers
w» char *stringand char string[]
= Nearly identical declarations
= An array variable is an immutable “pointer” to the first element.
= Consequences: int ar[10];
= ar isan array variable but looks like a pointer in many respects (though not

all)
= ar[0] isthe same as *ar void one() {
= ar[2] isthe same as * (ar+2) char *x = “foo”, *y = “foo”;
= We can use pointer arithmetic x[0] ="m’;
Differences .
) See right -> void two() {
- 9 char x[] = “foo”, y[] = “foo”;
x[0] ='m’;
10/12/2007 CS61C Exam #1 Review 41

Arrays (3)

= Array size n, want to access [0 to n-1]
= Test against element after array...

int ar(10], *p = ar, *q = ar + 10, sum = 0;

while (p != q) sum += *pt+;
= Is this legal?
= Wrong style
int i, ar(10]; for(i = 0; i < 107 i++) { ... }
= Right style

#define ARRAY_SIZE 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY SIZE; i++){ ... }
= Pitfall: An array in C does not know its own length, & bounds not
checked!
= Can accidentally access off the end

= Must pass the array and its size together
10/12/2007 CS61C Exam #1 Review 42

Pointer Arithmetic

= A Pointer is a memory address
= p+1 returns a ptr to the next array element
(*p) +1 VS *p++ VS * (p+1) VS (*p)++ ?
X = *p++ x="p;p= p+1;
x = (*p)++ x = *p; *p = *p + 17
= Array of Structs
= P+1 adds size of array element, not 1 byte!
= Valid Arithmetic
Add an integer to a pointer (traverse an array)
Subtract 2 pointers (in the same array? anywhere?)
Compare pointers (<, <=, ==, !=, >, >=)
Compare pointer to NULL
= Indicates that the pointer points to nothing by convention
= Most ISAs/OSs will turn * ((void*)NULL) into a segfault for you

10/12/2007 €S61C Exam #1 Review 43

C Strings (1)

= There are no string in C
= We approximate a string with an array
char string[] = "abc";
= We know this is a string, C doesn't
= ASCIIZ Format
= Last character is followed by a ‘\0"
= Length =# of characters (excluding ‘\0’ @ end)

= Functions
int (char *string);
int (char *strl, char *str2);
char * (char *dst, char *src);
10/12/2007 €S61C Exam #1 Review 44

C Strings (2)

= Buffer Overflows
= Endless source of viruses & bugs
= Will get you FIRED

void foo(char* string) {
int length = strlen(string) ;
char* buffer = (char*)malloc((length+l)*sizeof (char));
strncpy (buffer, string, length);

buffer[length] = ‘\0’;
// ete..
}
10/12/2007 CS61C Exam #1 Review 45

§ Virtual & Physical Storage

10/12/2007 CS61C Exam #1 Review 46

Virtual & Physical Storage

. C Variable Declaration/Storage Allocation
. Virtual Storage
. Arguments, Locals, Return Values
» Allocated on the “stack”
. Remember scoping rules
int i; struct Node list; char *string;
= Global
= Similar to above but outside of any block
= Allocated in “static storage”
int myGlobal; main() {}

. Dynamic (Later): Allocated on the “heap”
. Assembly

. Physical Storage

. Registers & Raw Memory
. Java?

10/12/2007 CS61C Exam #1 Review 47

The Stack

= Stack frame includes
= Return “instruction” address
« $ra saved here after jal
= Parameters
= Space for local variables
= In memory
= Stack frames are contiguous
= Stack pointer tells where top stack frame is
= Stack grows downwards in memory S
= LIFO Data Structure (CS61B) P
= Function Calls
= On entry a function creates a stack frame
= Stores all it’s variables
= On exit a function destroys its stack frame

frame

frame

frame

frame

10/12/2007 CS61C Exam #1 Review 48

The Heap

= Large pool of memory
= Not allocated in contiguous order
= Back-to-back requests could result in blocks very far apart
= Where Java new command allocates memory
= In C, specify number of bytes of memory to allocate
struct int *iptr;
iptr = (int *) malloc(8*sizeof (int));
/* malloc returns type (void *),
so need to cast to right type */
= malloc (): Allocates raw, uninitialized memory from heap

10/12/2007 €S61C Exam #1 Review 49

MIPS Sections VStaCK

= A program’s address space

contains 4 regions:
= Stack: local variables, grows Z

downward
= Heap: space requested for heap
pointers via malloc () ;
resizes dynamically, grows i
Doy amicaly, 8 static data
= Static data: variables
declared outside main, does COde

not grow or shrink
code: loaded when program For now, OS somehow
starts, does not change t:

pr
stack and heap (gray hash

lines). Wait for virtual memory|
10/12/2007 CS61C Exam #1 Review 50

Intel 80x86 Sections 7

= A C program’s 80x86 address

space :
= heap: space requested for é

pointers via malloc();

resizes dynamically, grows heap
upward

= static data: variables static data
declared outside main, does
not grow or shrink

= code: loaded when program COde
starts, does not change stack

= stack: local variables, grows 7

10/12/2007 CS61C Exam #1 Review 51

Managing Sections

= Code, Static storage are easy
= Never change size
= Filled from object file sections
= Stack space is also easy
= Stack frames are created and destroyed in (LIFO) order
= Just need to make sure we don't run out
= Managing the heap is tricky
= Memory can be allocated/freed at any time
= Size are unpredictable

10/12/2007 CS61C Exam #1 Review 52

Accessing Memory

10/12/2007 €S61C Exam #1 Review 53

5 Main Components

Personal Computer

Computer

Processor

Devices

Store (to)
=

Datapath ¥
=
Load (from|

10/12/200. xam eview 54

Data Transfer (1)

= Move data to/from memory
= Arguments: Register & Memory Address
= Register: number ($0 - $31) or name ($s0,..., $t0, ...)
= Memory address: a pointer from a register
= Maybe an offset as an immediate
= Location is register contents + offset

= 8($t0) = 8 + contents_of ($t0)
= Load Instruction Syntax:
1 234)

1) operation name (Iw, sw, Ibu, sb, etc...)
2) register that will receive value

3) numerical offset in bytes

4) register containing pointer to memory

10/12/2007 CS61C Exam #1 Review 55

Data Transfer (2)

= Load Word
= Example: 1u $t0,12($s0)
. ‘Tatkeérse pointer in $s0, add 12 to it, and then load the value at that memory address
into

= 12is called the offset
+ Used in accessing elements of array or structure
+ Base register points to beginning of array or structure
« Offset must be a constant
= If you write: 1w $t2,0(5t0)
« Then 5t0 better contain a pointer
« Don't mix these up!
= Store Word
= Store instruction syntax is identical to Load's
= Example: sw $t0,12($s0)
= This instruction will take the ﬁointer in $s0, add 12 bytes to it, and then store the
value from register $t0 into that memory address
= Aregister can hold any 32-bit value
= That value can be a (signed) int, an unsigned int, a pointer (memory address),
and so on
= Stored program computing!

10/12/2007 CS61C Exam #1 Review 56

Addressing (1)

= Every word in memory has an address
= Similar to an index in an array
« Memory[0], Memory[1], Memory[2],
= Needed to access 8-bit bytes and 32-bit words
= Today machines address memory as bytes
- “Byte Addressed”
« Hence 32-bit (4 byte) word addresses differ by 4
= Memory[0], Memory[4], Memory[8], ...
= Compile by hand using registers:
g = h + A[5];
gt $s1, h: $52, base address of A: $53
= What offset in 1w to select 2(5] in C? 4x5=20 to select 2(5]: byte v. word
= 1w $t0, 20($s3)
st0getsa[5)
« Add 20 to $53 to select A[5], put into $t0
= add $sl, $s2, $tO
+ $s1 = hea(5)
- Nextadditto hand placein g

10/12/2007 CS61C Exam #1 Review 57

Addressing (2)

Aligned
Not 1, 5,9 orD,,,
Aligned 2,6,A 0rE,,,

3,7,B,orF,,

= MIPS requires that all Vords addresses are multiples of 4 bytes
= Lowest 2 bits of PC are always 0!
= Called : objects fall on address that is multiple of their size.

10/12/2007 CS61C Exam #1 Review 58

Registers vs. Memory

= What if more variables than registers?
= Compiler tries to keep most frequently used variable in registers
= Less common variables in memory:
= Why not keep all variables in memory?
= Smaller is faster: registers are faster than memory
= Registers more versatile:
MIPS arithmetic instructions can read 2, operate on them, and write 1
per instruction
MIPS data transfer only read or write 1 operand per instruction, and no
operation
X86/IA32 is different. It was a bad idea.

10/12/2007 CS61C Exam #1 Review 59

§ Dynamic Memory

10/12/2007 CS61C Exam #1 Review 60

10

Dynamic Memory Alloc. (1)

= Allocating Memory in C

= malloc ()
= Why isn't there a pointer involved?
L] Example: ptr = (int *) malloc (sizeof(int));

= ptr points to memory block of size (sizeof (int)) bytes
= (int *) tells the type of that block (called a typecast)

= General Use Rules
= malloc is almost never used for 1 variable

= ptr = (int *) malloc (n*sizeof (int));
= This allocates an array of n integers.
= ptr = (struct stupid *) malloc(sizeof (struct stupid));
10/12/2007 CS61C Exam #1 Review 61

Dynamic Memory Alloc. (2)

= Pointer Declaration
= int*ptr;
= ptr doesn't actually point to anything yet?
= ptr = (int*)malloc(sizeof (int));
= Can point to something that exists
int *ptr, varl, var2;
varl = 5;
ptr = &varl;
var2 = *ptr;
= varl and var2 have room implicitly allocated for them.

ptr varl |

10/12/2007

var2 |

CS61C Exam #1 Review

Dynamic Memory Alloc. (3)

= C has operator sizeof ()
= Gives size in bytes
= Argument is type or type of variable
« Difference from strlen()?
= Assume size of objects can be misleading, so use sizeof(type)
= Changing Type Sizes
= int used to be 8b, 16b, 36b, 11b, etc
= How big are pointers?
= An operator, not a function!
char foo[3*sizeof (int)]
char foo[3*myfunction (int)]
char foo[3*myfunction(7)]

10/12/2007 €S61C Exam #1 Review 63

Dynamic Memory Alloc. (4)

= Dynamic Memory Initialization
= malloc ()ed memory contains garbage
= Causes crashes & security flaws!
= memset () is a handy function
= Freeing memory
s free(ptr);
= What about freeing twice?
= What about things not allocated by malloc?
= Requirements
= Must run fast malloc () and free()
= Minimal memory overhead
= Avoid fragmentation (external & internal fragmentation)

10/12/2007 €S61C Exam #1 Review

= An example

Heap Management

Request R1 for 100 bytes
Request R2 for 1 byte
Memory from R1 is freed
Request R3 for 50 bytes

R1 (100 bytes)

R2 (1 byte)

10/12/2007 CS61C Exam #1 Review 65

Heap Management

= An example
= Request R1 for 100 bytes R3?
= Request R2 for 1 byte
= Memory from R1 is freed
= Request R3 for 50 bytes

R2 (1 byte

R3?

10/12/2007 CS61C Exam #1 Review

11

K&R Malloc/Free (1)

= Look at Section 8.7 of K&R
= Code is terse/dense
= Uses some advanced features (unions)
= Basic Data Structure
= Block of Memory with Header
- size of the block
= pointer to the next block (unused in an allocated block)
= All free blocks are kept in a linked list
= malloc()
= Searches the free linked list for a block that is big enough.
= If none is found, more memory is requested from OS
= Otherwise it fails

s free()
= Checks if the blocks adjacent to the freed block are also free
= If so, adjacent free blocks are merged (coalesced)

= Otherwise, the freed block is just added to the free list

10/12/2007 €S61C Exam #1 Review 67

K&R Malloc/Free (2)

= Choosing among eligible (large enough) blocks
= best-fit: choose the smallest block that is big enough
= Tries to limit fragmentation but at the cost of time
= Leaves lots of small blocks (why?)
= first-fit: choose the first block we see that is big enough
= Quicker than best-fit (why?) but potentially more fragmentation
= Concentrate small blocks at the beginning of the free list
= next-fit: like first-fit but remember where we finished searching
and resume searching from there
= Does not concentrate small blocks at front like first-fit, should be faster
as a result.

10/12/2007 CS61C Exam #1 Review 68

K&R Malloc/Free (3)

= Each block is preceded by a header
typedef struct header {
struct header * ptr; /* next free block */

unsigned size; /* size of this block */ user address
} Header;
= Free list: | | -
= Circularly linked ptr | size user block

= Partially traversed by malloc and free
= Block appear on list in increasing memory position
Next fit algorithm for allocation
New block taken from tail of next sufficiently large block
Free merges blocks existing free block(s)
Globals:
static Header base; /* empty list to get started */
static Header *freep = NULL; /* start of free list */
= K&R uses a “union” type to force alignment
« Complicates field extraction: p->size becomes p->s.size

10/12/2007 €S61C Exam #1 Review 69

K&R Malloc/Free (4)

= IMS Design & Organization
= Run through K&R 8.7 Code

10/12/2007 CS61C Exam #1 Review 70

Garbage Collection

= Dynamically allocated memory is difficult
= Why not track it automatically?
= We need to know what'’s reachable
= In other words what we have a pointer to
= Unreachable memory is called garbage
= Reclaiming it is called garbage collection
= So how do we track what is in use?
= Techniques depend on the language
= Must rely on help from the compiler & OS
= Is this possible in C?

10/12/2007 CS61C Exam #1 Review 71

End of Prepared Slides

= Remaining Time
= Dinner
= Sp06 Problems
= Basic review of floating point
= Suggestions for Studying
= Go back over all your solutions/assignments
= Double check EVERY wrong answer
= Autograder logs should provide a starting place

10/12/2007 CS61C Exam #1 Review 72

12

§ Control Flow

§ Calling Conventions

10/12/2007 CS61C Exam #1 Review 74

§ Number Representations

10/12/2007 CS61C Exam #1 Review 76

10/12/2007 CS61C Exam #1 Review 73
M Logical & Bitwise Operators
=T
10/12/2007 CS61C Exam #1 Review 75
§ Floating Point Operations
T
10/12/2007 €S61C Exam #1 Review 77

§ Machine Language (Code)

10/12/2007 CS61C Exam #1 Review 78

13

Machine vs. Assembly
§ Language

10/12/2007 CS61C Exam #1 Review

79

Unsigned in MIPS

= Overloaded Term
= It meaning is context dependant
« What else in this class is like this?
= Abad design practice (cf C static & extern)
= Meanings
= Unsigned = Unsigned Integer
» Multiplication, Division & Comparison
= These operations must actually interpret bits differently
= Unsigned = No overflow check
= Addition, Subtraction
« These operations result in identical bit patterns whether signed or unsigned
= Unsigned = No sign extension
« Ib/lbu
= Unrelated
= Add/subtract immediate always sign extend
= Logical immediate operations never sign extend

10/12/2007 €S61C Exam #1 Review

MIPS Instruction Design

= Performance
= CISC: Bad, RISC: Good, SBN: Very Bad
= Why is the sweet spot in the middle at RISC?
= So what?
= Load 0xDEADBEEF into $s0
= lui $s0, OxDEAD; ori $s0, $s0, OxBEEF
= Any other ways to do this?
= Why in two halves? Why not in one instruction?
« Important point of design for RISC!
= Relationship to stored program computer?
= Single Instruction: SBN (subtract branch if negative)
= No need for registers, just use memory
= “Universal Operator”: NAND, Mux, etc...
= IA32/x86
= 1-18 byte instructions (e.g. strcpy!)
= Butinternally, executed as RISC

10/12/2007 CS61C Exam #1 Review

81

Belief & Debugging

= Belief: You believe you know what your program
does
= You think you understand it
= You think you know what the library calls do
= Fact: You can read what it actually does
= Computers are as close to perfect as possible
= A computer error or fault is very unlikely
= Consequence
= A mismatch means your beliefs are wrong
= Always assume that you are dead wrong
=« It's possible the bug is a typo

10/12/2007 €S61C Exam #1 Review

§ Assignments

All assignment are interrelated!
New parts of the class build on old
ones (unlike most classes)

10/12/2007 €S61C Exam #1 Review

83

Lab3 Vector Alternatives

= What we did
= Explicitly store the size
= NewSize = max(2*Size, loc+1)
= Memset to zero out the new storage
= Memcpy to copy other elements
= Other Options
= Use EOF to mark end of the array
= Ropes
= Gapped circular array buffer

10/12/2007 CS61C Exam #1 Review

14

Return the result of appending the characters in s2 to sl.
Assumption: enough space has been allocated for sl to store
the extra characters.

char* append (char sl[], char s2[]) {

int sllen = strlen (sl);
int s2len = strlen (s2);

1)
2)
3)
4)
5) */
6)
7)
8)

9) int k;

10) for (k=0; k<=s2len; k++) {

11) sl[k+sllen] = s2[k];

12)

13) return si;

14) }

10/12/2007 CS61C Exam #1 Review 85

#include <stdio.h>
struct point {

int x;

int y;

struct point* scanpoint() {
struct point *temp = new point;
scanf ("$d %d", &(temp->x), &(temp->y));

0)
1)
2)
3)
4))
5)
6)
7))
8)

9) return temp;

10) }

11)

12) void main() {

13) struct point p = scanpoint();

14) printf ("%d $d", p->x, p->y);

15) }

10/12/2007 CS61C Exam #1 Review 86

= For each of the following kinds of data
= List all possible storage locations
= The Stack
= The Heap
« Static Storage
= None of the above
Temporary variables
Function arguments
A global variable
A linked list

= What will foo () return?
char bar(int *p) { int b; return (b < p) ? 't' : '£'; }
char foo() { int a; return bar(sa); }

10/12/2007 €S61C Exam #1 Review 87

= Max & Min int on nova.cs.berkeley.edu
= 2147483647, -2147483648
« (2731)-1 and -(2731)
= Nova is a 32bit machine
« Cint and unsigned int datatypes will be 32 bits
« printf(“%u\n”, sizeof(int));
= Convert the unsigned binary value 10110010 to decimal
= 10110010 = 178
= Convert the signed (twos complement) binary value 10110010 to
decimal
= 10110010 = -78
= Signed will always means “twos complement” unless otherwise specified
= Other answers
« 50: sign magnitude
= -178: who knows?
« 178 thought for some reason it was a 32bit value (Why? I don't know...)

10/12/2007 CS61C Exam #1 Review 88

Quiz7

= Lines of code

= Order the three languages from most to least
= Java: very dense, thanks to extensive libs & language
support
= C: has libraries, but little language support

= MIPS Assembly: generally no libraries, certainly no
language support, simple commands

= Question hints at the power of abstraction

= Assemble k++, where k is in $s1
s addiu?$s1.2$s1.2[0-9]1*[1-9][0-9]*
= What's the constant added to k?

10/12/2007 CS61C Exam #1 Review 89

Quiz8

= Two instructions for "branch on less than"
= slti?,b(neleq)
= These are the four ways I know of to do this
= Anyone know any more?
= Why isn't it in MIPS?
= Load 0xDEADBEEF into $s0
= lui $s0, OxDEAD; ori $s0, $s0, OxBEEF
= Any other ways to do this?
= Why in two halves? Why not in one instruction?

10/12/2007 CS61C Exam #1 Review 90

15

Quiz10 Optimized

gcd: bne $al,$0,recursive case

if b ==
add $v0,%$a0,$0 # gcd = a
jr $ra
recursive_case:
div $a0, Sal # hi=a%b, lo=a/b
mfhi $t0 # $t0 = hi

add $a0,$%al,$0 # gcd
add al, st0,S$0
J gcd

gcd (b, a%b)

10/12/2007 €S61C Exam #1 Review

91

HW4Q2 Optimized

= C Code

int compare (int a, int b) {
if (sub (a, b) >= 0) return 1;
else return 0;

}

int sub (int a, int b) {
return a-b;

}

= MIPS Code
slt $v0, $al, $a0
jr Sra
10/12/2007 CS61C Exam #1 Review

16

