
1

10/12/2007 CS61C Exam #1 Review 1

CS61C: Exam1 Review

CS61C Fall2007 – Exam #1 Review

Greg Gibeling

Select Slides from Prof. Wawrzynek

10/12/2007 CS61C Exam #1 Review 2

Rules

� Participate or Leave
� Shut up. Dead serious. You talk, we all stop until you're done or you leave.
� It's not or job to force understanding upon you

� This is college, not gradeschool

� If you have a question, ask it NOW
� You aren't the only one with that question
� Even when you're wrong about something works its always an interesting

idea
� We cannot stress this enough

� Have a question to ask when I call on you
� … or you have to answer all subsequent questions
� What are you more afraid of? Appearing not to know everything, or having

that proved?

� Speak up, interrupt, don't raise your hand
� I'm often wrong, I'm not being tested, you are, you have to be right

10/12/2007 CS61C Exam #1 Review 3

Format

� 4:15-6:00 Lecture-ish
� Highlight lecture slides from Prof. Wawrzynek
� Discussion slides
� If you want us to review a particular quiz/homework/proj you lost points on now is the time!
� Before presenting an assignment

� What's your first guess as to the most common problem with this assignment?
� Who says this was an easy assignment?

� What to discuss
� What was the problem, from a detailed technical standpoint?
� Why did the student make this mistake?
� Our solution
� Some wrong student solutions

� Quizzes, Homeworks, Projects & Labs

� 6:15-7:15 Dinner+
� Random questions
� Started old midterm questions

� 7:15-8:00 Wrapup, Questions & Examples
� Old midterm questions
� General problem solving, we’ll roam and provide help
� What’s still not clear?
� Revisit any problem you like

10/12/2007 CS61C Exam #1 Review 4

Course Overview

10/12/2007 CS61C Exam #1 Review 5

61C

What are “Machine Structures”?

I/O systemProcessor

Compiler

Operating

System

(Windows 2K)

Application (ex: browser)

Digital Design

Circuit Design

Instruction Set
Architecture

Datapath & Control

transistors

MemoryHardware

Software Assembler

10/12/2007 CS61C Exam #1 Review 6

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g.,MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture Implementation

Register File

ALU

Levels of Abstraction

2

10/12/2007 CS61C Exam #1 Review 7

Personal Computer

Processor

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory

(where
programs,
data
live when
running)

Devices

Input

Output

Keyboard,

Mouse

Display,

Printer

Disk
(where
programs,
data
live when
not running)

5 Main Components

10/12/2007 CS61C Exam #1 Review 8

� Processor

� 2X in speed every 1.5 years (since ‘85);
100X performance in last decade.

� Memory

� DRAM capacity: 2x / 2 years (since ‘96);
64x size improvement in last decade.

� Disk

� Capacity: 2X / 1 year (since ‘97)

� 250X size in last decade.

Technology Trends

10/12/2007 CS61C Exam #1 Review 9

Stored Program Computer

� Binary Data
� Numbers: integer & floating point

� ±2Gi for integers, 2*10±38 for float (single precision)
� 4Gi values either way in 32b

� Characters: ASCII & Unicode
� An assignment from numbers to symbols

� Pointers: an integer with meaning
� Instructions: MIPS, IA32, SBN

� Perform operations on data

� The meaning of data depends on it’s interpretation
� In C we specify a type for all data
� In MIPS we don’t know the type apriori

� For example the format specifier tells us the type

10/12/2007 CS61C Exam #1 Review 10

Course/Review Outline

� Basics
� C-Language

� Pointers

� Memory management

� Machine Representations
� Numbers

� Assembly Programming

� Floating Point

� Compilation, Assembly

� Processors & Hardware

� Logic Circuit Design

� CPU organization

� Pipelining

� Memory Organization
� Caches

� Virtual Memory

� I/O

� Interrupts

� Disks, Networks

� Advanced Topics

� Performance

� Virtualization & Simulation

� Parallel Programming

� Parallel Architectures

10/12/2007 CS61C Exam #1 Review 11

C Overview

10/12/2007 CS61C Exam #1 Review 12

Compilation: Overview

� Java compiled to architecture independent
“bytecode”

� Java compiler is written in java/C

� C compiled to architecture specific machine code

� Part1: compiling .c files to .o files

� Part2: linking the .o files into executables

� Scheme is interpreted

� Interpreter is written in C

� Machine Code is interpreted

� Interpreter is in hardware!

3

10/12/2007 CS61C Exam #1 Review 13

Translation & Interpretation

� Examples
� Compiler: Translates an HLL into an LLL
� Assembler: Mechanical translation from assembly to machine code
� Linker

� A “translator”
� Truthfully it doesn’t translate anything

� BASH/TCSH/CMD: Shell interpreters
� CPU: A machine for interpreter implemented in hardware

� Translation
� Turn code into a different kind of code

� Interpretation
� Imperative languages: do what the commands say

� All languages we’ve see to date are imperative
� Programs are a list of commands

� Declarative languages: ?
� Verilog, the next language we’ll learn is declarative
� “Programs” are statements of existence, not commands

10/12/2007 CS61C Exam #1 Review 14

C vs. Java™ Overview

Java

� Object-oriented
(OOP)

� “Methods”

� Class libraries of data
structures

� Automatic memory
management

� High memory overhead

� All variables initialized

C

� No objects

� “Functions”

� C libraries are lower-level

� Manual
memory management

� Pointers

� No overhead

� No variables initialized

10/12/2007 CS61C Exam #1 Review 15

C vs. Java™ Syntax

� C to Java: A rough transition

� “.” in Java becomes “->” in C

� Both turn into lw/sw in MIPS

� Pointer vs Memory

� A pointer is different than the memory it points to

� E.g. strings are all in your imagination in C

� Can someone tell me how to free a string?

� You can store pointers in memory
� Leads to complex lw/sw sequences, lab5ex1

10/12/2007 CS61C Exam #1 Review 16

All Kinds of Zeros

� Not my IQ
� Kinds of Zeros

� NULL – for pointers
� 0 – for integers
� 0.0 – for floating point
� ‘\0’ – for characters

� #define FALSE 0
� Remember everything except 0 is TRUE
� No boolean types

� Why
� So that your code is readable
� NULL might not always be zero!

� These constants specify value & type

10/12/2007 CS61C Exam #1 Review 17

Common C Error

� There is a difference between
assignment and equality

� a = b is assignment

� a == b is an equality test

� This is one of the most common errors
for beginning C programmers!

10/12/2007 CS61C Exam #1 Review 18

C Syntax : flow control

� Conditionals
� if-else

� switch

� Loops
� while and for

� do-while

� All of these are branches in assembly

4

10/12/2007 CS61C Exam #1 Review 19

C Syntax: main

� int main (int argc, char *argv[])

� What does this mean?
� argc: number of strings on command line

� the executable counts as one

� plus one for each argument

� Example: unix% sort myFile

� argv is an array of pointers to strings

� Can also be written as a char ** argv

10/12/2007 CS61C Exam #1 Review 20

Assembly

10/12/2007 CS61C Exam #1 Review 21

Assembly Language

� Assembly is nearly what a CPU interprets

� “Instructions” are the primitive operations

� The set of instructions a particular CPU implements is

part of the Instruction Set Architecture
(ISA)

� Intel 80x86 (Pentium 4), IBM/Motorola PowerPC (Old
Macintosh), MIPS, Intel IA64, ARM, ...

� Assembly language is a textual representation
� Intermediate form in a C compiler
� As a means to directly program the CPU

� Why would anyone want to do this?

10/12/2007 CS61C Exam #1 Review 22

ISAs (1)

� CISC

� Complex Instruction Set Computing

� Useful for human assembly programmers

� Lots of complex instructions

� Ex: DEC VAX architecture had an instruction to evaluate polynomials!

� RISC (Cocke IBM, Patterson, 1980s)

� Reduced Instruction Set Computing

� Keep the instruction set small and simple

� Makes it easier to build fast hardware.

� Composing simpler instructions into more complex ones

� Useful for compilers

10/12/2007 CS61C Exam #1 Review 23

ISAs (2)

� Problem: Design A Processor
� How many and what kind of registers?

� Native data width? MIPS is 32…

� How many and what kind of instructions?
� Will you have branches?
� Encoding?

� RISC or CISC?
� Superscalar? Vector? Dataflow? OOO?

� Take CS152!

� What’s the minimum ISA?
� SBN!

10/12/2007 CS61C Exam #1 Review 24

ISAs (3)

� Single Instruction
� sbn: subtract branch if negative

� Build all operations up from this instruction

� No need for registers, just use memory

� “Universal Operator”
� NAND, Mux, etc…

� Performance
� CISC: Bad, RISC: Good, SBN: Very Bad

� Why is the sweet spot in the middle at RISC?

� So what?

5

10/12/2007 CS61C Exam #1 Review 25

MIPS Architecture

� MIPS

� An ISA

� Not a CPU!

� Semiconductor company

� Built one of the 1st commercial RISC CPUs

� Why MIPS instead of Intel 80x86?

� MIPS is simple, elegant

� CS152, CS162, CS164, Research!

� MIPS still widely used in embedded applications.

10/12/2007 CS61C Exam #1 Review 26

Storage in Assembly (1)

� C & Java: Variables
� Stored where? Memory?
� How big are they?

� Assembly: Registers
� Special storage locations built directly into the CPU

� Must be fast & cheap to build
� Limited in number (32 for MIPS)
� Must be used efficiently
� Keeps machine code small

� Small, fast & simple
� All the same size (32bits for MIPS)

� Width of registers generally the same as ISA word size

� Thousands of times faster than main memory (< 1ns)

10/12/2007 CS61C Exam #1 Review 27

Storage in Assembly (2)

� C & Java have variables
� Logical or virtual storage
� Can be stored in memory or a register
� Variable is just a name for a value

� Assembly has locations
� Physical storage
� Locations can be named (registers & labels)
� The value in a location can change, the location cannot

� Register Coloring
� Deciding which variables go in which locations
� Similar to 4-color theorem. See CS164

CUnknown

AssemblyJavaKnown

UnknownKnown

Width

Meaning

10/12/2007 CS61C Exam #1 Review 28

Storage in Assembly (2)

� MIPS

� Registers are numbered from $0 to
$31

� Also named: $zero, $at …
$16 - $23 � $s0 - $s7 (C Variables)

$8 - $15 � $t0 - $t7 (Temporaries)

� 0 is a common constant
� Register zero ($0 or $zero) = 0

� $0 is immutable

0
1
2

31

.

.

.

Register File

32 bits

10/12/2007 CS61C Exam #1 Review 29

Assembly Instructions (1)

� Instructions

� An imperative (command) statement

� executes exactly one of a short list of simple commands

� One of (=, +, -, *, /)

� One per line (no need for ;)

� Syntax of General Instructions:

1 2,3,4

1) name of operation

2) operand getting result (“destination”)

3) First operand for operation (“source1”)

4) Second operand for operation (“source2”), register or immediate

� Syntax is rigid

� 1 operator, 3 operands (for MIPS)

� Why?

10/12/2007 CS61C Exam #1 Review 30

Assembly Instructions (2)

� Simple Examples
add $s0,$s1,$s2 # a = b + c

� a stored in $s0, b in $s1, c in $s2

sub $s3,$s4,$s5 # d = e – f

� d stored in $s3, e in $s4, f in $s5

� Composition (Compilation)
a = b + c + d - e;

add $t0, $s1, $s2 # temp = b + c

add $t0, $t0, $s3 # temp = temp + d

sub $s0, $t0, $s4 # a = temp – e

6

10/12/2007 CS61C Exam #1 Review 31

Assembly Instructions (3)

� Immediates are numerical constants

� Very common

� How else do we get meaningful values?

� Add Immediate:
� addi $s0,$s1,10 # f = g + 10

� f stored in $s0, g in $s1

� Similar to add instruction

� No subi in MIPS. Why? RISC!

10/12/2007 CS61C Exam #1 Review 32

Memory Exposed

10/12/2007 CS61C Exam #1 Review 33

Address vs. Value

� Consider memory to be a single huge array:

� Each cell of the array has an address associated with it.

� Each cell also stores some value

� Do you think they use signed or unsigned numbers?
Negative address?!

� Don’t confuse the address referring to a memory
location with the value stored in that location.

23 42
101 102 103 104 105 ...

10/12/2007 CS61C Exam #1 Review 34

Pointers (1)

� An address refers to a particular memory

location. In other words, it points to a
memory location.

� Pointer: A variable that contains an address

23 42
101 102 103 104 105 ...

x y

Location (address)

name

p

104

10/12/2007 CS61C Exam #1 Review 35

Pointers (2)

� How to create a pointer:
& operator: get address of a variable

� How get a value pointed to?
* “dereference operator”: get value pointed to

printf(“p points to %d\n”,*p);

p ? x ?

x = 3; p ? x 3

p =&x; p x 3

Note the “*” gets used

2 different ways in

this example. In the

declaration to indicate
that p is going to be a

pointer, and in the
printf to get the

value pointed to by p.

int *p, x;

10/12/2007 CS61C Exam #1 Review 36

Pointers (3)

�How to change a variable pointed to?

� Use dereference * operator on left of =

p x 5*p = 5;

p x 3

7

10/12/2007 CS61C Exam #1 Review 37

Pointers (4)

� Pointer Types

� Normally a pointer can only point to one type

� Can point to different instances of that type!

� void * is a type that can point to anything

� Function Pointers: Remember JALR?

� Advantages

� Cheaper than passing a big array or struct

� What if your struct is >2GB on a 32bit machine?

� Cleaner, more compact code (K&R allocator)

� Disadvantes

� Single largest source of bugs in software

� Segfault & bus errors

� Security holes

� Declaring a pointer just allocates space to hold the pointer – it does not allocate
something to be pointed to!

� Local variables in C are not initialized, they may contain anything.

10/12/2007 CS61C Exam #1 Review 38

Assembly Labels

� Example:
N: .word 0

� N: A constant number, the address of the word
� .word: Allocate a word’s worth of storage

� 0: fill the allocated storage with 0

� Basic Use
lw $t0, 25($t1) # $t0 = *($t1 + 25)

sw $t0, 25($t1) # *($t1 + 25) = $t0

� Advanced Uses
sw $s0, 10+N($a1)

� 10+N is a constant computed by the assembler

sw $s0, N # sw $s0, N($0)
� Simple shorthand (useable only because of $0!)

� PsuedoInstructions
la $t0, N # lui + ori as needed

li $t0, N # should be the same as la…

10/12/2007 CS61C Exam #1 Review 39

Pointers and Parameters (1)

� Java and C pass primitives “by value”

� Procedure/function gets a copy of the parameter

� Changing the copy cannot change the original

void addOne (int x) {

x = x + 1;

}

int y = 3;

addOne(y); // y is still == 3

� How would we “fix” this?

� Java passes objects “by reference”

� Autoboxing/Unboxing in Java 1.5 complicates this

� C++, VB, etc… can pass arguments byref or byval

10/12/2007 CS61C Exam #1 Review 40

Arrays (1)

� Declaration
� int ar[2];

� declares a 2-element integer array

� An array is just a block of memory.

� int ar[] = {795, 635};

� Declares & initializes a 2-element integer array

� Where do the initial values come from?

� Declared arrays are only allocated while the scope is valid

� Lexical scoping (remember CS61A?)

� Accessing elements

� ar[num];

� returns the numth element.

char *foo() {

char string[32]; ...;

return string;
} // hopefully segfault

10/12/2007 CS61C Exam #1 Review 41

Arrays (2)

� Arrays are (almost) identical to pointers

� char *string and char string[]

� Nearly identical declarations

� An array variable is an immutable “pointer” to the first element.

� Consequences: int ar[10];

� ar is an array variable but looks like a pointer in many respects (though not

all)

� ar[0] is the same as *ar

� ar[2] is the same as *(ar+2)

� We can use pointer arithmetic

� Differences

� See right ->

void one() {
char *x = “foo”, *y = “foo”;
x[0] = ‘m’;

}
void two() {

char x[] = “foo”, y[] = “foo”;
x[0] = ‘m’;

}

10/12/2007 CS61C Exam #1 Review 42

Arrays (3)

� Array size n, want to access [0 to n-1]

� Test against element after array…
int ar[10], *p = ar, *q = ar + 10, sum = 0;

while (p != q) sum += *p++;

� Is this legal?

� Wrong style
int i, ar[10]; for(i = 0; i < 10; i++) { ... }

� Right style
#define ARRAY_SIZE 10

int i, a[ARRAY_SIZE];

for(i = 0; i < ARRAY_SIZE; i++){ ... }

� Pitfall: An array in C does not know its own length, & bounds not
checked!

� Can accidentally access off the end

� Must pass the array and its size together

8

10/12/2007 CS61C Exam #1 Review 43

Pointer Arithmetic

� A Pointer is a memory address
� p+1 returns a ptr to the next array element
(*p)+1 vs *p++ vs *(p+1) vs (*p)++ ?
x = *p++ x = *p ; p = p + 1;

x = (*p)++ x = *p ; *p = *p + 1;

� Array of Structs
� P+1 adds size of array element, not 1 byte!

� Valid Arithmetic
� Add an integer to a pointer (traverse an array)
� Subtract 2 pointers (in the same array? anywhere?)
� Compare pointers (<, <=, ==, !=, >, >=)
� Compare pointer to NULL

� Indicates that the pointer points to nothing by convention
� Most ISAs/OSs will turn *((void*)NULL) into a segfault for you

10/12/2007 CS61C Exam #1 Review 44

C Strings (1)

� There are no string in C
� We approximate a string with an array

char string[] = "abc";

� We know this is a string, C doesn’t
� ASCIIZ Format

� Last character is followed by a ‘\0’
� Length =# of characters (excluding ‘\0’ @ end)

� Functions
int strlen(char *string);

int strcmp(char *str1, char *str2);

char *strcpy(char *dst, char *src);

10/12/2007 CS61C Exam #1 Review 45

C Strings (2)

� Buffer Overflows

� Endless source of viruses & bugs

� Will get you FIRED

void foo(char* string) {

int length = strlen(string);

char* buffer = (char*)malloc((length+1)*sizeof(char));

strncpy(buffer, string, length);

buffer[length] = ‘\0’;

// etc…

}

10/12/2007 CS61C Exam #1 Review 46

Virtual & Physical Storage

10/12/2007 CS61C Exam #1 Review 47

Virtual & Physical Storage

� C Variable Declaration/Storage Allocation
� Virtual Storage
� Arguments, Locals, Return Values

� Allocated on the “stack”
� Remember scoping rules
int i; struct Node list; char *string;

� Global
� Similar to above but outside of any block
� Allocated in “static storage”
int myGlobal; main() {}

� Dynamic (Later): Allocated on the “heap”

� Assembly
� Physical Storage
� Registers & Raw Memory

� Java?

10/12/2007 CS61C Exam #1 Review 48

The Stack

� Stack frame includes

� Return “instruction” address

� $ra saved here after jal

� Parameters

� Space for local variables

� In memory

� Stack frames are contiguous

� Stack pointer tells where top stack frame is

� Stack grows downwards in memory

� LIFO Data Structure (CS61B)

� Function Calls

� On entry a function creates a stack frame

� Stores all it’s variables

� On exit a function destroys its stack frame

frame

frame

frame

frame

SP

9

10/12/2007 CS61C Exam #1 Review 49

The Heap

� Large pool of memory

� Not allocated in contiguous order

� Back-to-back requests could result in blocks very far apart

� Where Java new command allocates memory

� In C, specify number of bytes of memory to allocate
struct int *iptr;

iptr = (int *) malloc(8*sizeof(int));

/* malloc returns type (void *),

so need to cast to right type */

� malloc(): Allocates raw, uninitialized memory from heap

10/12/2007 CS61C Exam #1 Review 50

MIPS Sections

� A program’s address space
contains 4 regions:

� Stack: local variables, grows
downward

� Heap: space requested for
pointers via malloc() ;

resizes dynamically, grows
upward

� Static data: variables
declared outside main, does
not grow or shrink

� code: loaded when program
starts, does not change

code

static data

heap

stack

For now, OS somehow

prevents accesses between

stack and heap (gray hash

lines). Wait for virtual memory

~ FFFF FFFFhex

~ 0hex

10/12/2007 CS61C Exam #1 Review 51

Intel 80x86 Sections

� A C program’s 80x86 address
space :

� heap: space requested for
pointers via malloc();

resizes dynamically, grows
upward

� static data: variables
declared outside main, does
not grow or shrink

� code: loaded when program
starts, does not change

� stack: local variables, grows
downward

code

static data

heap

stack
~ 08000000hex

10/12/2007 CS61C Exam #1 Review 52

Managing Sections

� Code, Static storage are easy

� Never change size

� Filled from object file sections

� Stack space is also easy

� Stack frames are created and destroyed in (LIFO) order

� Just need to make sure we don’t run out

� Managing the heap is tricky

� Memory can be allocated/freed at any time

� Size are unpredictable

10/12/2007 CS61C Exam #1 Review 53

Accessing Memory

10/12/2007 CS61C Exam #1 Review 54

5 Main Components

Personal Computer

Processor

Computer

Control
(“brain”)

Datapath
Registers

Memory Devices

Input

Output
Load (from)Load (from)

Store (to)Store (to)

Registers are in the datapath of the

processor; if operands are in memory,

we must transfer them to the processor

to operate on them, and then transfer

back to memory when done.

10

10/12/2007 CS61C Exam #1 Review 55

Data Transfer (1)

� Move data to/from memory

� Arguments: Register & Memory Address

� Register: number ($0 - $31) or name ($s0,…, $t0, …)

� Memory address: a pointer from a register

� Maybe an offset as an immediate

� Location is register contents + offset
� 8($t0) = 8 + contents_of($t0)

� Load Instruction Syntax:

1 2,3(4)

1) operation name (lw, sw, lbu, sb, etc…)

2) register that will receive value

3) numerical offset in bytes

4) register containing pointer to memory

10/12/2007 CS61C Exam #1 Review 56

Data Transfer (2)

� Load Word
� Example: lw $t0,12($s0)

� Take the pointer in $s0, add 12 to it, and then load the value at that memory address
into $t0

� 12 is called the offset
� Used in accessing elements of array or structure

� Base register points to beginning of array or structure
� Offset must be a constant

� If you write: lw $t2,0($t0)
� Then $t0 better contain a pointer

� Don’t mix these up!

� Store Word
� Store instruction syntax is identical to Load’s
� Example: sw $t0,12($s0)

� This instruction will take the pointer in $s0, add 12 bytes to it, and then store the
value from register $t0 into that memory address

� A register can hold any 32-bit value
� That value can be a (signed) int, an unsigned int, a pointer (memory address),

and so on
� Stored program computing!

10/12/2007 CS61C Exam #1 Review 57

Addressing (1)

� Every word in memory has an address
� Similar to an index in an array

� Memory[0], Memory[1], Memory[2], …

� Needed to access 8-bit bytes and 32-bit words
� Today machines address memory as bytes

� “Byte Addressed”
� Hence 32-bit (4 byte) word addresses differ by 4
� Memory[0], Memory[4], Memory[8], …

� Compile by hand using registers:
g = h + A[5];

g: $s1, h: $s2, base address of A: $s3
� What offset in lw to select A[5] in C? 4x5=20 to select A[5]: byte v. word
� lw $t0, 20($s3)

� $t0 gets A[5]
� Add 20 to $s3 to select A[5], put into $t0

� add $s1, $s2, $t0
� $s1 = h+A[5]

� Next add it to h and place in g

10/12/2007 CS61C Exam #1 Review 58

Addressing (2)

0 1 2 3

Aligned

Not

Aligned

� MIPS requires that all words addresses are multiples of 4 bytes

� Lowest 2 bits of PC are always 0!

� Called Alignment: objects fall on address that is multiple of their size.

0, 4, 8, or Chex

Last hex digit

of address is:

1, 5, 9, or Dhex

2, 6, A, or Ehex

3, 7, B, or Fhex

10/12/2007 CS61C Exam #1 Review 59

Registers vs. Memory

� What if more variables than registers?

� Compiler tries to keep most frequently used variable in registers

� Less common variables in memory: spilling

� Why not keep all variables in memory?

� Smaller is faster: registers are faster than memory

� Registers more versatile:

� MIPS arithmetic instructions can read 2, operate on them, and write 1
per instruction

� MIPS data transfer only read or write 1 operand per instruction, and no
operation

� X86/IA32 is different. It was a bad idea.

10/12/2007 CS61C Exam #1 Review 60

Dynamic Memory

11

10/12/2007 CS61C Exam #1 Review 61

Dynamic Memory Alloc. (1)

� Allocating Memory in C
� malloc()

� Why isn’t there a pointer involved?

� Example: ptr = (int *) malloc (sizeof(int));

� ptr points to memory block of size (sizeof(int)) bytes

� (int *) tells the type of that block (called a typecast)

� General Use Rules
� malloc is almost never used for 1 variable

� ptr = (int *) malloc (n*sizeof(int));

� This allocates an array of n integers.
� ptr = (struct stupid *) malloc(sizeof(struct stupid));

10/12/2007 CS61C Exam #1 Review 62

Dynamic Memory Alloc. (2)

� Pointer Declaration
� int*ptr;

� ptr doesn’t actually point to anything yet?

� ptr = (int*)malloc(sizeof(int));

� Can point to something that exists
int *ptr, var1, var2;

var1 = 5;

ptr = &var1;

var2 = *ptr;

� var1 and var2 have room implicitly allocated for them.

ptr var1 ? var2 ?5 5?

10/12/2007 CS61C Exam #1 Review 63

Dynamic Memory Alloc. (3)

� C has operator sizeof()
� Gives size in bytes

� Argument is type or type of variable
� Difference from strlen()?

� Assume size of objects can be misleading, so use sizeof(type)

� Changing Type Sizes
� int used to be 8b, 16b, 36b, 11b, etc

� How big are pointers?

� An operator, not a function!
char foo[3*sizeof(int)]

char foo[3*myfunction(int)]

char foo[3*myfunction(7)]

10/12/2007 CS61C Exam #1 Review 64

Dynamic Memory Alloc. (4)

� Dynamic Memory Initialization
� malloc()ed memory contains garbage

� Causes crashes & security flaws!
� memset() is a handy function

� Freeing memory
� free(ptr);

� What about freeing twice?
� What about things not allocated by malloc?

� Requirements
� Must run fast malloc() and free()

� Minimal memory overhead
� Avoid fragmentation (external & internal fragmentation)

10/12/2007 CS61C Exam #1 Review 65

Heap Management

� An example

� Request R1 for 100 bytes

� Request R2 for 1 byte

� Memory from R1 is freed

� Request R3 for 50 bytes
R2 (1 byte)

R1 (100 bytes)

10/12/2007 CS61C Exam #1 Review 66

Heap Management

� An example

� Request R1 for 100 bytes

� Request R2 for 1 byte

� Memory from R1 is freed

� Request R3 for 50 bytes
R2 (1 byte)

R3?

R3?

12

10/12/2007 CS61C Exam #1 Review 67

K&R Malloc/Free (1)

� Look at Section 8.7 of K&R

� Code is terse/dense

� Uses some advanced features (unions)

� Basic Data Structure

� Block of Memory with Header

� size of the block

� pointer to the next block (unused in an allocated block)

� All free blocks are kept in a linked list

� malloc()

� Searches the free linked list for a block that is big enough.

� If none is found, more memory is requested from OS

� Otherwise it fails

� free()

� Checks if the blocks adjacent to the freed block are also free

� If so, adjacent free blocks are merged (coalesced)

� Otherwise, the freed block is just added to the free list

10/12/2007 CS61C Exam #1 Review 68

K&R Malloc/Free (2)

� Choosing among eligible (large enough) blocks

� best-fit: choose the smallest block that is big enough

� Tries to limit fragmentation but at the cost of time

� Leaves lots of small blocks (why?)

� first-fit: choose the first block we see that is big enough

� Quicker than best-fit (why?) but potentially more fragmentation

� Concentrate small blocks at the beginning of the free list

� next-fit: like first-fit but remember where we finished searching
and resume searching from there

� Does not concentrate small blocks at front like first-fit, should be faster
as a result.

10/12/2007 CS61C Exam #1 Review 69

K&R Malloc/Free (3)

ptr size user block

user address

� Each block is preceded by a header
typedef struct header {

struct header * ptr; /* next free block */

unsigned size; /* size of this block */
} Header;

� Free list:
� Circularly linked
� Partially traversed by malloc and free
� Block appear on list in increasing memory position

� Next fit algorithm for allocation
� New block taken from tail of next sufficiently large block
� Free merges blocks existing free block(s)

� Globals:
static Header base; /* empty list to get started */

static Header *freep = NULL; /* start of free list */

� K&R uses a “union” type to force alignment
� Complicates field extraction: p->size becomes p->s.size

10/12/2007 CS61C Exam #1 Review 70

K&R Malloc/Free (4)

� IMS Design & Organization

� Run through K&R 8.7 Code

10/12/2007 CS61C Exam #1 Review 71

Garbage Collection

� Dynamically allocated memory is difficult

� Why not track it automatically?

� We need to know what’s reachable

� In other words what we have a pointer to

� Unreachable memory is called garbage
� Reclaiming it is called garbage collection

� So how do we track what is in use?

� Techniques depend on the language

� Must rely on help from the compiler & OS

� Is this possible in C?

10/12/2007 CS61C Exam #1 Review 72

End of Prepared Slides

� Remaining Time

� Dinner

� Sp06 Problems

� Basic review of floating point

� Suggestions for Studying

� Go back over all your solutions/assignments

� Double check EVERY wrong answer

� Autograder logs should provide a starting place

13

10/12/2007 CS61C Exam #1 Review 73

Control Flow

10/12/2007 CS61C Exam #1 Review 74

Calling Conventions

10/12/2007 CS61C Exam #1 Review 75

Logical & Bitwise Operators

10/12/2007 CS61C Exam #1 Review 76

Number Representations

10/12/2007 CS61C Exam #1 Review 77

Floating Point Operations

10/12/2007 CS61C Exam #1 Review 78

Machine Language (Code)

14

10/12/2007 CS61C Exam #1 Review 79

Machine vs. Assembly
Language

10/12/2007 CS61C Exam #1 Review 80

Unsigned in MIPS

� Overloaded Term
� It meaning is context dependant

� What else in this class is like this?

� A bad design practice (cf C static & extern)

� Meanings
� Unsigned = Unsigned Integer

� Multiplication, Division & Comparison
� These operations must actually interpret bits differently

� Unsigned = No overflow check
� Addition, Subtraction
� These operations result in identical bit patterns whether signed or unsigned

� Unsigned = No sign extension
� lb/lbu

� Unrelated
� Add/subtract immediate always sign extend
� Logical immediate operations never sign extend

10/12/2007 CS61C Exam #1 Review 81

MIPS Instruction Design

� Performance
� CISC: Bad, RISC: Good, SBN: Very Bad
� Why is the sweet spot in the middle at RISC?
� So what?

� Load 0xDEADBEEF into $s0
� lui $s0, 0xDEAD; ori $s0, $s0, 0xBEEF

� Any other ways to do this?

� Why in two halves? Why not in one instruction?
� Important point of design for RISC!
� Relationship to stored program computer?

� Single Instruction: SBN (subtract branch if negative)
� No need for registers, just use memory
� “Universal Operator”: NAND, Mux, etc…

� IA32/x86
� 1-18 byte instructions (e.g. strcpy!)
� But internally, executed as RISC

10/12/2007 CS61C Exam #1 Review 82

Belief & Debugging

� Belief: You believe you know what your program
does
� You think you understand it

� You think you know what the library calls do

� Fact: You can read what it actually does
� Computers are as close to perfect as possible

� A computer error or fault is very unlikely

� Consequence
� A mismatch means your beliefs are wrong

� Always assume that you are dead wrong
� It's possible the bug is a typo

10/12/2007 CS61C Exam #1 Review 83

Assignments

All assignment are interrelated!
New parts of the class build on old

ones (unlike most classes)

10/12/2007 CS61C Exam #1 Review 84

Lab3 Vector Alternatives

� What we did

� Explicitly store the size

� NewSize = max(2*Size, loc+1)

� Memset to zero out the new storage

� Memcpy to copy other elements

� Other Options

� Use EOF to mark end of the array

� Ropes

� Gapped circular array buffer

15

10/12/2007 CS61C Exam #1 Review 85

Quiz3
1) /*

2) Return the result of appending the characters in s2 to s1.

3) Assumption: enough space has been allocated for s1 to store

4) the extra characters.

5) */

6) char* append (char s1[], char s2[]) {

7) int s1len = strlen (s1);

8) int s2len = strlen (s2);

9) int k;

10) for (k=0; k<=s2len; k++) {

11) s1[k+s1len] = s2[k];

12) }

13) return s1;

14) }

10/12/2007 CS61C Exam #1 Review 86

Quiz4

0) #include <stdio.h>

1) struct point {

2) int x;

3) int y;

4) };

5)

6) struct point* scanpoint() {

7) struct point *temp = new point;

8) scanf("%d %d", &(temp->x), &(temp->y));

9) return temp;

10) }

11)

12) void main() {

13) struct point p = scanpoint();

14) printf("%d %d", p->x, p->y);

15) }

10/12/2007 CS61C Exam #1 Review 87

Quiz5

� For each of the following kinds of data
� List all possible storage locations

� The Stack
� The Heap
� Static Storage
� None of the above

� Temporary variables
� Function arguments
� A global variable
� A linked list

� What will foo() return?
char bar(int *p) { int b; return (&b < p) ? 't' : 'f'; }

char foo() { int a; return bar(&a); }

10/12/2007 CS61C Exam #1 Review 88

Quiz6

� Max & Min int on nova.cs.berkeley.edu
� 2147483647, -2147483648

� (2^31)-1 and -(2^31)

� Nova is a 32bit machine
� C int and unsigned int datatypes will be 32 bits
� printf(“%u\n”, sizeof(int));

� Convert the unsigned binary value 10110010 to decimal
� 10110010 = 178

� Convert the signed (twos complement) binary value 10110010 to
decimal

� 10110010 = -78
� Signed will always means “twos complement” unless otherwise specified
� Other answers

� 50: sign magnitude
� -178: who knows?
� 178: thought for some reason it was a 32bit value (Why? I don’t know…)

10/12/2007 CS61C Exam #1 Review 89

Quiz7

� Lines of code
� Order the three languages from most to least

� Java: very dense, thanks to extensive libs & language
support

� C: has libraries, but little language support

� MIPS Assembly: generally no libraries, certainly no
language support, simple commands

� Question hints at the power of abstraction

� Assemble k++, where k is in $s1
� addiu?$s1.?$s1.?[0-9]*[1-9][0-9]*

� What’s the constant added to k?

10/12/2007 CS61C Exam #1 Review 90

Quiz8

� Two instructions for "branch on less than“
� slti?,b(ne|eq)

� These are the four ways I know of to do this

� Anyone know any more?

� Why isn’t it in MIPS?

� Load 0xDEADBEEF into $s0

� lui $s0, 0xDEAD; ori $s0, $s0, 0xBEEF

� Any other ways to do this?

� Why in two halves? Why not in one instruction?

16

10/12/2007 CS61C Exam #1 Review 91

Quiz10 Optimized

gcd: bne $a1,$0,recursive_case

if b == 0 …
add $v0,$a0,$0 # gcd = a
jr $ra

recursive_case:

div $a0,$a1 # hi=a%b, lo=a/b
mfhi $t0 # $t0 = hi
add $a0,$a1,$0 # gcd = gcd (b, a%b)

add $a1,$t0,$0
j gcd

10/12/2007 CS61C Exam #1 Review 92

HW4Q2 Optimized

� C Code
int compare (int a, int b) {

if (sub (a, b) >= 0) return 1;

else return 0;

}

int sub (int a, int b) {

return a-b;

}

� MIPS Code
slt $v0, $a1, $a0

jr $ra

